
1st year

1 st seme	ster Mand	atory courses	for all students	2 nd sem	ester
Statistical signal p (Fulvio Gin			Methods an	nd techniques of meas (Angelo Sab	urement and data analysis atini)
Bioinspired computational methods					
Biological data (Francesco Marcelloni +	•		=	Neural and fuzzy c (Beatrice Laz	
Analysis of bionic and robotic systems					
Principles of bionics and l Paolo Dario + Do				Modeling of multi-p <mark>hys</mark> sandro Tognetti + A <mark>les</mark>	
Bioinspired and soft robotics Mechanics of smart materials and structures (Antonio De Simone + Alessandro Lucantonio)	Soft robotics technologies (Matteo Cianchetti)		Applied brain science Behavioural ar neuroscience (Emi Pietro Pi	liano Ricciardi + _	Computational neuroscience (Alessio Micheli + Claudio Gallicchio)
E	lective courses (tot: 12 EC	TS – namely 2	2 courses to be chose	en by students)	
Artificial intelligent systems fo			Advan	ced materials for bioni	cs (Francesco Greco)
Enzo Pasquales)			Electro	nics for bionics engine	eering (Daniele Rossi)
Robot Programming framewor (Egidio Falotico + Ga	ks and IoT platforms				

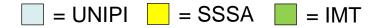
2nd year – Curriculum Biorobotics

1st semester

2nd semester

(Nicola Vitiello

+ Simona Crea)


Biomechanics of human motion (Vito Monaco)	Robotic and data-driven rehabilitation (Marco Controzzi + Andrea Mannini)
dvanced interventional and therapeutic technolog	jies
Robotics for minimally invasive and targeted therapy (Arianna Menciassi)	Bionic organs and tissues (Leonardo Ricotti)
targeted therapy	tissues

Design principles for bionic tissue engineering

(Christian

Cipriani)

(Arti Ahluwalia)

2nd year – Curriculum Neural Engineering

1st semester

2nd semester

Advanced image	Integrative cerebral
processing	functions
(Nicola Vanello + Gaetano Valenza)	(Angelo Gemignani)
eractive Systems and Affective Computing	
Interactive	Affective
systems	computing
(Daniele Mazzei)	(Enzo Pasquale Scilingo)
ural prostheses	
Neural tissue	Neural interfaces and bioelectronic
engineering	medicine (Silvestro Micera + Alberto
(Giovanni Vozzi)	Mazzoni)

Bionic senses (Alessandro Tognetti + Nicola Carbonaro)

	1 st y	ear	
	1 st semester	2 nd semester	
	Principles of bionics and biorobotics engineering (Paolo Dario) – 6 ECTS	Modeling of multi-physics phenomena (Alessandro Tognetti) – 6 ECTS	
Mandatory courses common to both curricula	Statistical signal processing (Fulvio Gini) – 6 ECTS	Methods and techniques of measurement and data analysis (Angelo Sabatini) - 6 ECTS	
	Biological data mining (Francesco Marcelloni) – 6 ECTS	Neural and fuzzy computation (Beatrice Lazzerini) – 6 ECTS	
Mandatory courses specific for the Biorobotics curriculum	Mechanics of smart materials and structures (Antonio De Simone) – 6 ECTS	Soft robotics technologies (Matteo Cianchetti) - 6 ECTS	
Mandatory courses specific for the Neural Engineering curriculum	Behavioural and cognitive neuroscience (Emiliano Ricciardi) – 6 ECTS	Computational neuroscience (Alessio Micheli) - 6 ECTS	
	Artificial intelligent systems for human identification (Enzo Pasquale Scilingo) – 6 ECTS	Advanced materials for bionics (Francesco Greco) - 6 ECTS	
Elective courses common to both curricula	Neuromorphic engineering (Calogero Oddo) – 6 ECTS	Electronics for bionics engineering (Daniele Rossi) – 6 ECTS	
	Robot Programming frameworks and IoT platforms (Egidio Falotico) – 6 ECTS		

2 nd year – Curriculum: Biorobotics				
1 st semester	2 nd semester			
Biomechanics of human motion (Vito Monaco) – 6 ECTS	Robotic and data-driven rehabilitation (Marco Controzzi) – 6 ECTS			
Prostheses (Christian Cipriani) – 6 ECTS	Exoskeletons (Nicola Vitiello) – 6 ECTS			
Robotics for minimally invasive and targeted therapy (Arianna Menciassi) – 6 ECTS	Bionic organs and tissues (Leonardo Ricotti) – 6 ECTS			
Design principles for bionic tissue engineering (Arti Ahluwalia) – 6 ECTS				

2 nd year – Curriculum: Neural Engineering				
1 st semester	2 nd semester			
Advanced image processing (Nicola Vanello) – 6 ECTS	Integrative cerebral function (Angelo Gemignani) – 6 ECTS			
Neural tissue engineering (Giovanni Vozzi) – 6 ECTS	Neural interfaces and bioelectronic medicine (Silvestro Micera) – 6 ECTS			
Interactive systems (Daniele Mazzei) – 6 ECTS	Affective computing (Enzo Pasquale Scilingo) – 6 ECTS			
Bionic senses (Alessandro Tognetti) - 6 ECTS				

	1 st y	ear	
	1 st semester	2 nd semester	
	Principles of bionics and biorobotics engineering (Paolo Dario) – 6 ECTS	Modeling of multi-physics phenomena (Alessandro Tognetti) – 6 ECTS	
Mandatory courses common to both curricula	Statistical signal processing (Fulvio Gini) – 6 ECTS	Methods and techniques of measurement and data analysis (Angelo Sabatini) - 6 ECTS	
	Biological data mining (Francesco Marcelloni) – 6 ECTS	Neural and fuzzy computation (Beatrice Lazzerini) – 6 ECTS	
Mandatory courses specific for the Biorobotics curriculum	Mechanics of smart materials and structures (Antonio De Simone) – 6 ECTS	Soft robotics technologies (Matteo Cianchetti) - 6 ECTS	
Mandatory courses specific for the Neural gineering curriculum	Behavioural and cognitive neuroscience (Emiliano Ricciardi) – 6 ECTS		
	Artificial intelligent systems for human identification (Enzo Pasquale Scilingo) – 6 ECTS		
Elective courses common to both curricula			
	Robot Programming frameworks and IoT platforms (Egidio Falotico) – 6 ECTS		

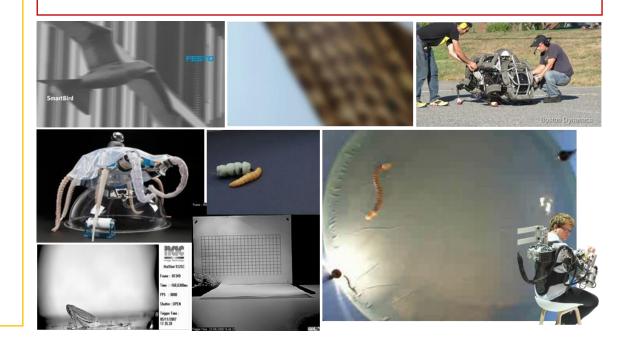
Principles of bionics and biorobotics engineering

Focus

• Make students able to face frontier engineering problems, by combining science and hi-tech approaches (proper of bionics design)

Main Contents

- Historical evolution of bionics, related to robotics and bioengineering;
- Model organisms and biological locomotion principles in different media, and applications in robotics;
- Bionic energy management: comparison between organisms and robots;
- Fabrication technologies at different scales;
- Bioinspired structural design and advanced materials;
- Fundamentals of robot mechanics (schematic of the joints, homogeneous transformations, Jacobian, methods for kinematic and dynamic studies);
- Swarm robotics;


M.Sc. Bionics

Engineering

• Ethical issues and legal considerations.

Learning Outcomes

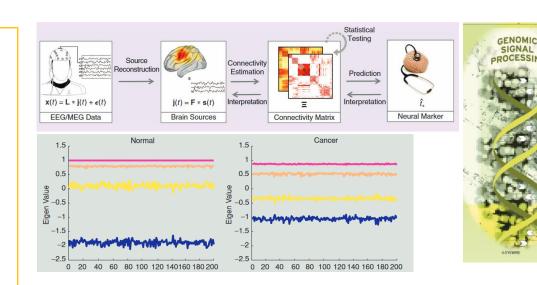
- Providing basic knowledge and principles on design, fabrication, and control processes of bionics systems
- Highlighting current bionics systems and their applications
- Stimulating students directly to develop innovative bionic concepts by exploiting the knowledge acquired during the course

Statistical signal processing

Focus

M.Sc. Bionics

Engineering


• Statistical signal processing methods for deterministic and random parameter estimation, data analysis, random signal recovery and filtering, model identification, power spectral density estimation.

Learning Outcomes

 Background knowledge necessary to solve typical problems by using methods of statistical signal processing

Main Contents

 Orthonormal base signal expansion, Principal Component Analysis (PCA), Sample estimators, Method of moments estimators, Maximum likelihood estimators, Linear and Non Linear Least Squares Least, Bayes estimation, Minimum Mean Square Error (MMSE) and Maximum A Posteriori (MAP) estimation, Linear MMSE (LMMSE) estimation, ARMA modeling, Wiener filter for signal filtering, prediction and interpolation, parametric and non Parametric power spectral density estimation.

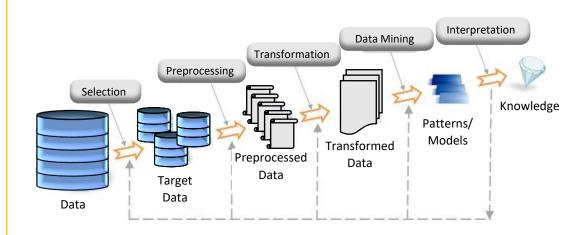
Biological data mining

Focus

• Main techniques used in Data Mining

Contenuti principali

- Data Preprocessing
- Frequent pattern mining
- Classification
- Clustering


M.Sc. Bionics

Engineering

- Outlier Detection
- Laboratories on the application of the methods presented during the course

Learning Outcomes

 To provide a solid knowledge of the main techniques used in data mining. This knowledge will allow identifying the most suitable approach for solving each type of data mining problem.

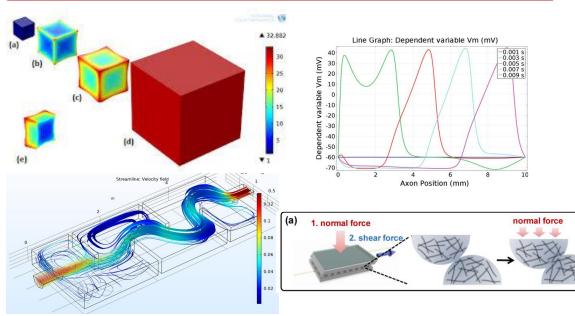
	1 st year			
	1 st semester	2 nd semester		
	Principles of bionics and biorobotics engineering (Paolo Dario) – 6 ECTS	Modeling of multi-physics phenomena (Alessandro Tognetti) – 6 ECTS		
Mandatory courses common to both curricula	Statistical signal processing (Fulvio Gini) – 6 ECTS	Methods and techniques of measurement and data analysis (Angelo Sabatini) - 6 ECTS		
	Biological data mining (Francesco Marcelloni) – 6 ECTS	Neural and fuzzy computation (Beatrice Lazzerini) – 6 ECTS		
Mandatory courses specific for the probotics curriculum	Mechanics of smart materials and structures (Antonio De Simone) – 6 ECTS	Soft robotics technologies (Matteo Cianchetti) - 6 ECTS		
Mandatory courses becific for the Neural ineering curriculum	Behavioural and cognitive neuroscience (Emiliano Ricciardi) – 6 ECTS			
	Artificial intelligent systems for human identification (Enzo Pasquale Scilingo) – 6 ECTS			
Elective courses common to both curricula				
	Robot Programming frameworks and IoT platforms (Egidio Falotico) – 6 ECTS			

Modeling of multi-physics phenomena

Focus

• Computational modeling of multi-physics systems with applications to bionics

Main Topics


M.Sc. Bionics

Engineering

- Weak-form modeling and theory of the Finite Element Method
- Numerical methods and best practices for the solution of non-linear and transient problems
- Linear and non-linear elasticity
- Incompressible flows of Newtonian fluids
- Electromagnetism at low frequencies (biolectric phenomena and neural models)
- Design of sensors and bioinspired devices using computational tools

Learning Outcomes

 Fundamental physical concepts, numerical methods and tools for the computational modeling of a wide range of multi-physics phenomena

Methods and techniques of measurement and data analysis

Focus

M.Sc. Bionics

Engineering

• Methods and techniques in physical measurements for bionic applications

Main Contents

- Application and design of measurement systems
- Measurement systems explained through mathematical modeling
- Signal processing methods for analysis of experimental data

Learning Outcomes

• Measurement problem solving (acquisition and interpretation)

Neural and fuzzy computation

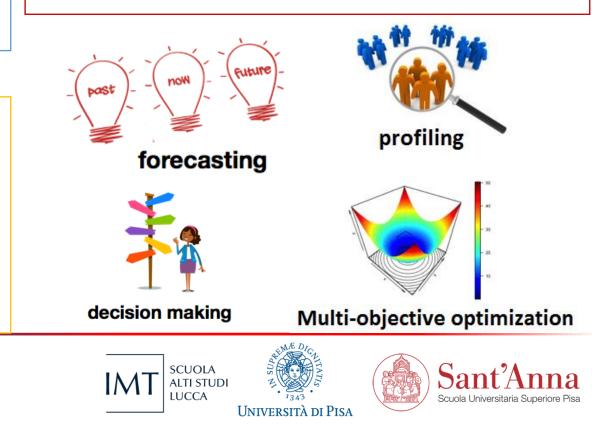
Focus

- Basic concepts and models of Computational Intelligence
- Application of the associated techniques to real-world problems in several application domains

http://www.bionicsengineering.it/

Main Contents

- Artificial neural networks
- Deep learning
- Fuzzy logic


M.Sc. Bionics

Engineering

- Fuzzy systems
- Genetic algorithms

Learning Outcomes

• Design and develop intelligent systems with human-like capabilities in terms of reasoning, learning and adaptation

	1 st y	ear	
	1 st semester	2 nd semester	
Mandatory courses common to both curricula			
	Biological data mining (Francesco Marcelloni) – 6 ECTS	Neural and fuzzy computation (Beatrice Lazzerini) – 6 ECTS	
Mandatory courses specific for the Biorobotics curriculum	Mechanics of smart materials and structures (Antonio De Simone) – 6 ECTS	Soft robotics technologies (Matteo Cianchetti) - 6 ECTS	
Mandatory courses specific for the Neural Engineering curriculum	Behavioural and cognitive neuroscience (Emiliano Ricciardi) – 6 ECTS	Computational neuroscience (Alessio Micheli) - 6 ECTS	
Elective courses common to both curricula			

Mechanics of smart materials and structures

Focus

M.Sc. Bionics

Engineering

• Non linear mechanics of one-dimensional active and elastic systems in the regime of large deformations: from robotic arms to elephant trunks

Main Topics

- Infinitesimal and finite rotations
- Kinematics and equilibrium of deformable rods
- Material properties and consitutive models
- Prinicple of virtual powers, minimal potential energy, and the Finite Element Method
- Applications: wires and tendons, Euler's elastica and Galileo's beam, bending with large deformations, buckling and post-critical behavior of elastic systems

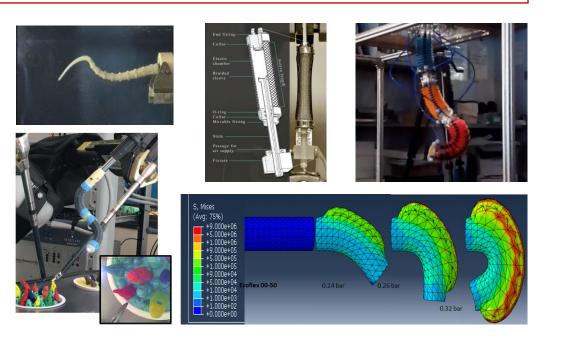
Learning Outcomes

ALTI STUD

• Methodological approach for the formulation and solution of shape control problems in biological and robotic systems

Soft robotics technologies

Focus


• Use of soft materials for developing soft robots and mechatronics technologies

Main Contents

- Bioinspiration and morphological computation
- Novel sensing and actuation technologies
- FEM implemented in ANSYS software for nonlinear analysis
- Behaviour and characterization of elastomeric materials

Learning Outcomes

• Use of soft/compliant materials for the design of mechatronic systems through advanced design principles

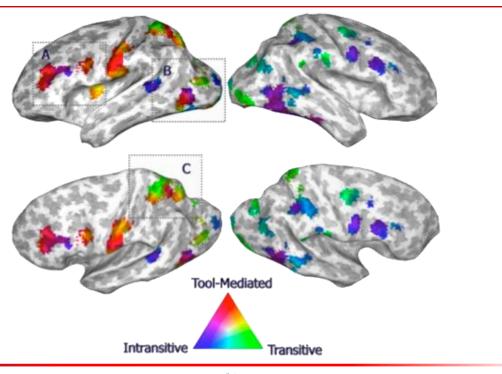
	1 st y	ear	
	1 st semester	2 nd semester	
Mandatory courses common to both curricula			
Mandatory courses specific for the Biorobotics curriculum	Mechanics of smart materials and structures (Antonio De Simone) – 6 ECTS	Soft robotics technologies (Matteo Cianchetti) - 6 ECTS	
Mandatory courses specific for the Neural < Engineering curriculum	Behavioural and cognitive neuroscience (Emiliano Ricciardi) – 6 ECTS	Computational neuroscience (Alessio Micheli) - 6 ECTS	
	Artificial intelligent systems for human identification (Enzo Pasquale Scilingo) – 6 ECTS	Advanced materials for bionics (Francesco Greco) - 6 ECTS	
Elective courses common to both curricula			

Behavioral and cognitive neuroscience

Focus

 Neuroimaging has revolutionized neuroscience, allowing us to investigate the neural correlates of behavior and mental functions

Objective


The course introduces the theoretical and methodological aspects of cognitive and social neuroscience, introducing to the fundamentals of brain anatomy and physiology, and to neuroimaging techniques

Main contents

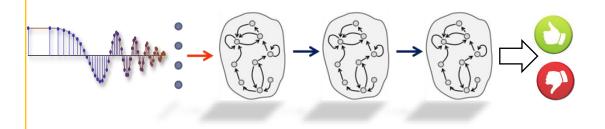
M.Sc. Bionics

Engineering

- basics of brain anatomy and physiology
- neuroimaging methodologies: principles, applications, methods of analysis
- neurobiological correlates of cognition and behavior
- functional neuroanatomy of perception, consciousness and sleep, language, emotions and behavior motor control and representation of action, development of brain-computer interfaces

Computational neuroscience

Focus


• Introduction to fundamentals of the CNS considering both the bio-inspired neural modelling and computational point of view

Learning Outcomes

 Capability of analysis and development of advanced CNS/Machine Learning models

Main Contents

- Neuroscience modeling
- Spiking and reservoir computing neural networks
- Advanced computational learning models
- Dynamical/Recurrent neural networks

Deep Recurrent Neural Network

		1 st y	ear	
		1 st semester	2 nd semester	
	$\left\{ \left(\right. \right. \right. \right. \right.$			
	$\left\{ \left(\right. \right. \right. \right. \\$	Behavioural and cognitive neuroscience (Emiliano Ricciardi) – 6 ECTS	Computational neuroscience (Alessio Micheli) - 6 ECTS	
		Artificial intelligent systems for human identification (Enzo Pasquale Scilingo) – 6 ECTS	Advanced materials for bionics (Francesco Greco) - 6 ECTS	
Elective courses common to both curricula	$\left\{ \right\}$	Neuromorphic engineering (Calogero Oddo) – 6 ECTS	Electronics for bionics engineering (Daniele Rossi) – 6 ECTS	
		Robot Programming frameworks and IoT platforms (Egidio Falotico) – 6 ECTS		

Artificial intelligent systems for human identification

Focus

 Advanced techniques to verify or recognize the identity of a living person based on the analysis of biological/physiological traits and/or behavioural features.

Main contents

M.Sc. Bionics

Engineering

- Recognition, identification and verification
- Privacy, security and ethics
- Physiological biometric systems: fingerprint recognition, face recognition, iris recognition, retina recognition, hand recognition, vein patterns
- Behavioral biometric systems: keystroke dynamics, signature recognition, voice recognition, gait recognition

Learning Outcomes

•Acquire basic knowledge to process physiological and behavioural features to recognize the identity of a living person.

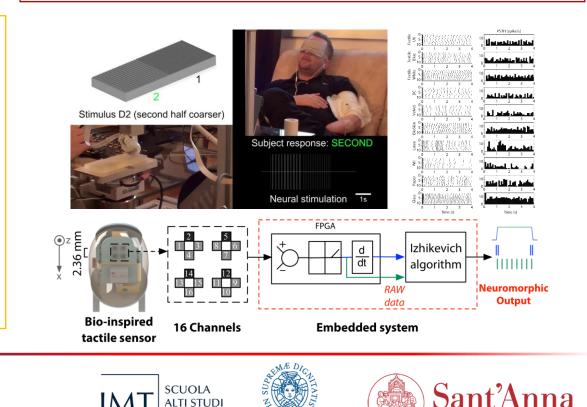
Neuromorphic engineering

Focus

M.Sc. Bionics

Engineering

 Computational and physical models that emulate neuron dynamics


Main Contents

- Technologial solutions for embedded spiking systems
- Signal processing techniques for spiking signals (artificial or physiological)
- Methods for simulating neuron dynamics (e.g. lzhikevich model)
- Use and design of neuromorphic systems

Learning Outcomes

LUCCA

 Neurorobotic systems and neurophysiological data for restoring sensori-motor functions

UNIVERSITÀ DI PISA

Robot programming frameworks and IoT platforms

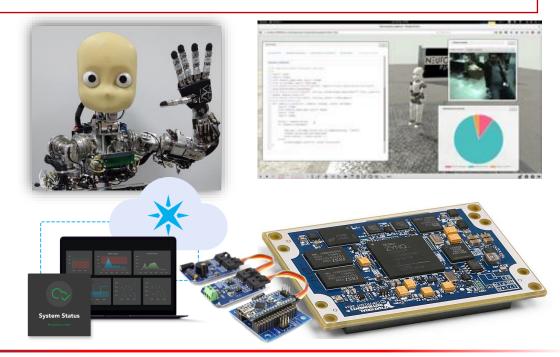
Focus

- Software design of autonomous robots and systems
- Robot programming based on different middleware, enhanced by IoT platforms and ancillary hardware peripherals

Main Topics

M.Sc. Bionics

Engineering


- Robotic middleware (ROS, YARP)
- Communication mechanisms
- Robot control with robotic operative systems
- SoM programming with hardware peripherals

http://www.bionicsengineering.it/

• IoT platforms and cloud programming

Learning Outcomes

 Theoretical and practical competences in robotic and SoM programming with IoT platforms and ancillary hardware peripherals

SCUOLA ALTI STUDI LUCCA UNIVERSITÀ DI PISA Scuola Universitaria Superiore Pisa

	1 st y	/ear	
	1 st semester	2 nd semester	
Mandatory courses common to both curricula	Principles of bionics and biorobotics engineering (Paolo Dario) – 6 ECTS		
	Biological data mining (Francesco Marcelloni) – 6 ECTS		
Mandatory courses specific for the Biorobotics curriculum	Mechanics of smart materials and structures (Antonio De Simone) – 6 ECTS		
Mandatory courses specific for the Neural ngineering curriculum	Behavioural and cognitive neuroscience (Emiliano Ricciardi) – 6 ECTS		
	Artificial intelligent systems for human identification (Enzo Pasquale Scilingo) – 6 ECTS	Advanced materials for bionics (Francesco Greco) - 6 ECTS	
Elective courses common to both curricula	Neuromorphic engineering (Calogero Oddo) – 6 ECTS	Electronics for bionics engineering (Daniele Rossi) – 6 ECTS	
	Robot Programming frameworks and IoT platforms (Egidio Falotico) – 6 ECTS		

Advanced materials for bionics

Focus

- Materials Science & Engineering: materials classes, structure, properties
- Advanced Concepts and applications of materials in Bionics

Learning Outcomes

- solid background in Materials Science & Engineering
- knowledge of uses of modern advanced materials in Bionics Engineering

Main Topics

M.Sc. Bionics

Engineering

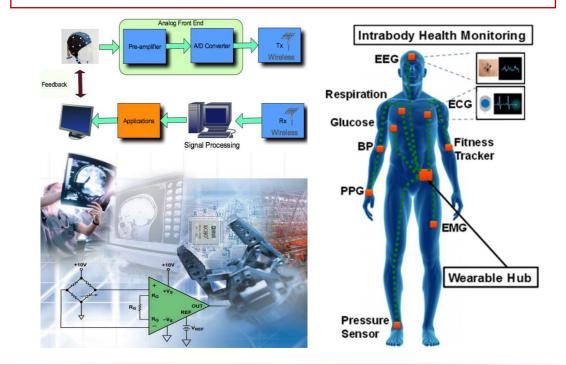
- Basic traditional topics of Materials Science & Eng.
- Metals, Ceramics, Polymers, Composites
- Advanced Materials Concepts: Biocompatibility, complex Soft Matter, Nanotechnology & Nanostructures, Bioinspired & Stimuli Responsive Materials.
- Investigation & Fabrication Techniques
- Technology & Bionics Applications: materials for bionics, bioelectronics, sensors&actuators in robotics

Electronics for bionics engineering

Focus

M.Sc. Bionics

Engineering


• Analysis and design of the building blocks of an electronic system for the acquisition and processing of biological sensor data

Main Contents

- Analog front-end building blocks: instrumentation amplifiers, filters and ADC/DAC converters
- Digital interfaces transferring digitalised sensor data to an embedded microcontroller
- Design principles for energy and power efficient electronic systems for wearable applications

Learning Outcomes

• Acquisition of a solid knowledge of the techniques and methods related to the design of sensor based electronic systems

2 nd year – Curriculum: Biorobotics		
1 st semester	2 nd semester	
Biomechanics of human motion (Vito Monaco) – 6 ECTS	Robotic and data-driven rehabilitation (Marco Controzzi) – 6 ECTS	
Prostheses (Christian Cipriani) – 6 ECTS	Exoskeletons (Nicola Vitiello) – 6 ECTS	
Robotics for minimally invasive and targeted therapy (Arianna Menciassi) – 6 ECTS	Bionic organs and tissues (Leonardo Ricotti) – 6 ECTS	
Design principles for bionic tissue engineering (Arti Ahluwalia) – 6 ECTS		

2 nd year – Curriculum: Neural Engineering		
1 st semester	2 nd semester	

Final duties: Lab training (3 ECTS) and Thesis (15 ECTS)

Biomechanics of human motion

Focus

• Biomechanics of human movements and physiological principles underlying motor control.

Main Topics

- 3D kinematics and kinetics;
- physiology of muscle contraction
- modeling of muscle-tendon actuators;
- numerical methods to solve dynamic models adopted in biomechanics;
- EMG signals

M.Sc. Bionics

Engineering

• instruments in a motion lab

Learning Outcomes

 Methodological approach for the study of human motion during dynamic motor tasks mediated by muscletendon actuators

Prostheses

Focus

M.Sc. Bionics

Engineering

- Upper limb prostheses
- Embedded controls

Main Contents

- Basic components of myoelectric and body-powered arms (batteries, mechanical, electrical, suspension systems)
- Architecture, operation and peripherals of the microcontroller

Learning Outcomes

- Ability to discuss the design choices of a modern prosthetic arm
- Ability to design and implement in a microcontroller a control system for a prosthesis

Robotics for minimally invasive and targeted therapy

Focus

• Robots, intelligent tools, integrated mechatronic systems, from the *MACRO* to the *micro* scale, to improve accuracy and repeatability in medical interventions.

Main Contents

- Contributions of robotics, mechatronics and bioengineering in minimally invasive surgery and targeted therapy.
- Autonomous robots, tele-operated robots, hand held tools, shared control robots for surgery.
- Endoluminal approaches and miniature robots towards the micro scale.

Learning Outcomes

• Knowledge and tools to design robots and mechatronic tools for surgical / diagnostic / therapeutic applications.

http://www.bionicsengineering.it/

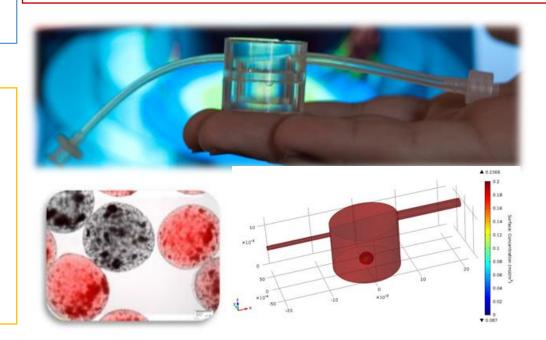
IMT SCUOLA ALTI STUDI LUCCA

Design principles for bionic tissue engineering

Focus

• *in vitro* models, artificial organs & delivery systems using technology based on stem cells, organoids, smart materials & smart fabrication

Main contents


M.Sc. Bionics

Engineering

- Cells and cellular models
- Quantitative models of cell-material interaction
- Stem cell and organoid technology
- Design criteria for 3D constructs
- Fluidic system design

Learning Outcomes

• Design and application of cell-based models

2 nd year – Curriculum: Biorobotics		
1 st semester	2 nd semester	
Biomechanics of human motion (Vito Monaco) – 6 ECTS	Robotic and data-driven rehabilitation (Marco Controzzi) – 6 ECTS	
Prostheses (Christian Cipriani) – 6 ECTS	Exoskeletons (Nicola Vitiello) – 6 ECTS	
Robotics for minimally invasive and targeted therapy (Arianna Menciassi) – 6 ECTS	Bionic organs and tissues (Leonardo Ricotti) – 6 ECTS	
Design principles for bionic tissue engineering (Arti Ahluwalia) – 6 ECTS		

2 nd year – Curriculum: Neural Engineering		
1 st semester	2 nd semester	

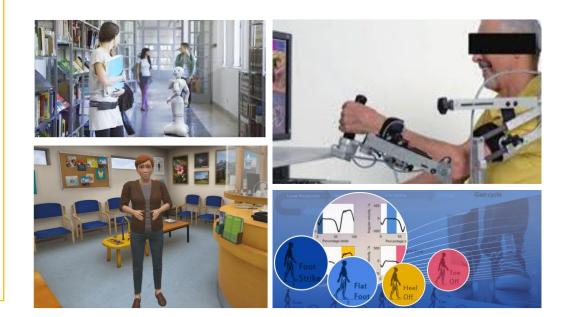
Final duties: Lab training (3 ECTS) and Thesis (15 ECTS)

Robotic and data-driven rehabilitation

Focus

- Robotics and its current scenario for rehabilitation
- Data-driven and evidence-based translational research in rehabilitation

Main Topics


M.Sc. Bionics

Engineering

- the fourth industrial revolution and the digital transformation: evolution of robotics (rehabilitative, assistive, collaborative, social)
- basic translational and experimental research to assess robotic prototype in clinical settings;
- evidence-based studies in clinical rehabilitation
- machine learning methods implementation, validation and its diagnostic tools in applications in the field of bioengineering and rehabilitation

Learning Outcomes

- current trends in rehabilitation
- clinical trials and translational research
- data-driven and evidence-based rehabilitation

Exoskeletons

Focus

- Lower- and upper-limb exoskeletons for rehabilitation and assistance
- Exoskeletons for industrial applications
- Lower-limb prostheses

Main Contents

- State of the art of lower-limb prostheses, lower- and upper-limb exoskeletons for rehabilitation and asssistance
- Design principles of ergonomic wearable robots
- Series-elastic actuators

M.Sc. Bionics

Engineering

- Physical and cognitive human-robot interfaces
- Control architectures for exoskeletons and prostheses
- Hands-on programming of real-time embedded controllers

Learning Outcomes

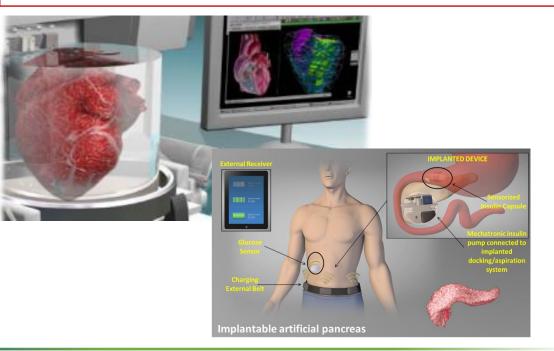
- Design of wearable powered robots for movement assistance, rehabilitation, augmentation and/or functional replacement
- NI LabVIEW Real-Time and FPGA programming

Bionic organs and tissues

Focus

M.Sc. Bionics

Engineering


- Artificial and bioartificial organs and tissues
- Regenerative medicine

Main Contents

- Artificial and bioartificial substitutes of muscle, cartilage, pancreas, heart, kidney, etc.
- Miniaturized implantable mechatronic devices
- Biomaterials promoting tissue regeneration
- Microfabricated structures and smart materials for bionic organs and tissues

Learning Outcomes

- Technologies and approches to regenerate or substitute human organs and tissues
- Hands-on awareness of chemistry, microfabrication and molecular biology

http://www.bionicsengineering.it/

IMT SCUOLA ALTI STUDI LUCCA

2 nd \	/ear –	Curricul	lum: Bioro	botics

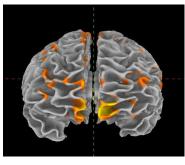
1 st semester	2 nd semester

2 nd year – Curriculum: Neural Engineering		
1 st semester	2 nd semester	
Advanced image processing (Nicola Vanello) – 6 ECTS	Integrative cerebral function (Angelo Gemignani) – 6 ECTS	
Neural tissue engineering (Giovanni Vozzi) – 6 ECTS	Neural interfaces and bioelectronic medicine (Silvestro Micera) – 6 ECTS	
Interactive systems (Daniele Mazzei) – 6 ECTS	Affective computing (Enzo Pasquale Scilingo) – 6 ECTS	
Bionic senses (Alessandro Tognetti) - 6 ECTS		

Final duties: Lab training (3 ECTS) and Thesis (15 ECTS)

Advanced image processing

Focus

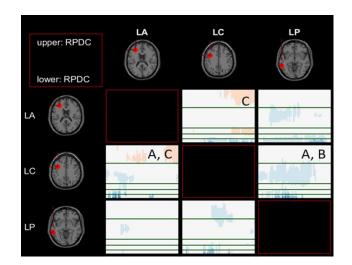

 Models and Methods fo brain function analysis

Main Contents

- Functional Magnetic Resonance Imaging (fMRI)
- Brain connectivity from fMRI and Electroencephalography (EEG)
- Source imaging from EEG e MRI

Learning Outcomes

- •How different methods for brain function studies are applied
- •Link between experimental desgin and data analysis approaches



Time frequency

analysis of brain

connectivity

fMRI analysis

http://www.bionicsengineering.it/

SCUOLA ALTI STUDI LUCCA UNIVERSITÀ DI PISA

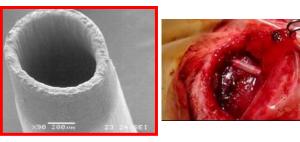
Neural tissue engineering

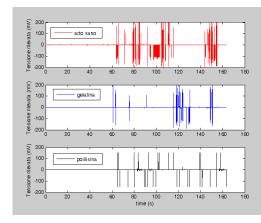
Focus

M.Sc. Bionics

Engineering

 Technological processes and materials to build neural grafts and promote their interaction with physiological neural tissue


Main Contents


- Bioactive materials and their characterisation
- 2D and 3D Fabrication
- Neuro-Chemical functionalisation

http://www.bionicsengineering.it/

Learning Outcomes

 Acquire the strategies to develop grafts and scaffolds that can be implanted to promote nerve regeneration and to repair neural damage

Interactive systems

Focus

- Design of interactive robots and machines
- Advanced techniques for monitoring and process physiological signals for studying emotions

Main Contents

- Human-centred Design
- Internet of things

M.Sc. Bionics

Engineering

- Physiology of emotional response
- Computatitonal modeling of emotions
- Eye tracking, body movement analysis and facial emotion recognition

Learning Outcomes

- Design of systems able to interface with humans and based on a "human-centered design"
- monitor and process of physiological signal corresponding to different emotional states

Bionic senses

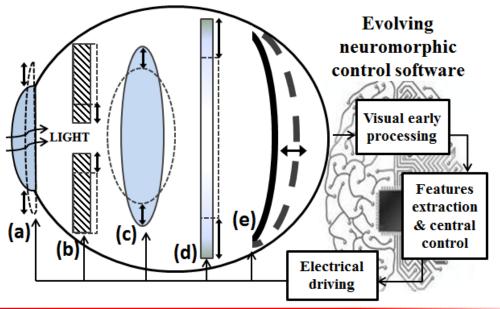
Focus

- Pre-neural and neural components of human and animal senses.
- Bionics senses design

Main Contents

- Introduction to natural senses
- Properties of biological receptors
- Physics of pre-neural media
- Sensations and perceptions
- The human senses

M.Sc. Bionics


Engineering

Modeling and design of bionic senses

Learning Outcomes

 Engineering artificial sensing and perceptual systems through biological principles to implement neural-prostheses to restore lost functions, for human augmentation and bioinspired perceptional machines

Evolving pre-retinal & retinal hardware

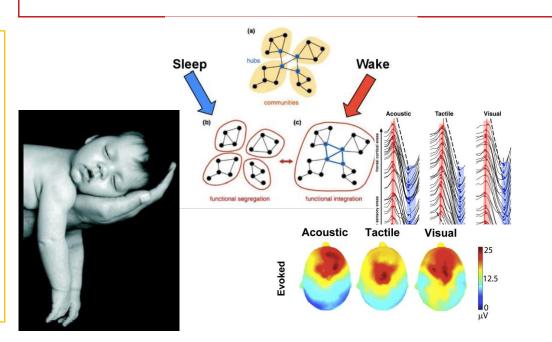
2 nd	vear –	Curricul	lum: Bioro	botics
	y Cur	Curricu		

1 st semester	2 nd semester

2 nd year – Curriculum: Neural Engineering		
1 st semester	2 nd semester	
Advanced image processing (Nicola Vanello) – 6 ECTS	Integrative cerebral function (Angelo Gemignani) – 6 ECTS	
Neural tissue engineering (Giovanni Vozzi) – 6 ECTS	Neural interfaces and bioelectronic medicine (Silvestro Micera) – 6 ECTS	
Interactive systems (Daniele Mazzei) – 6 ECTS	Affective computing (Enzo Pasquale Scilingo) – 6 ECTS	
Bionic senses (Alessandro Tognetti) - 6 ECTS		

Integrative cerebral function

Focus


• Cognitive and emotional brain functions as the by-product of the activity of anatomo-functional distributed and integrated brain networks.

Main Contents

- Node and rich-clubs in the human connectome
- Sleep, mentation and dreaming
- Biological bases of consciousness
- Theory of mind and mirror neuron system
- Empathy in the emotional context Stress in the context of body and mind integration

Learning Outcomes

 Methodological aproach for the study of complex brain functions and their biological bases

Neural interfaces and bioelectronic medicine

Focus

• Implantable neuroprostheses

Main Contents

- Brain-to-machine interfaces
- Artificial limbs with neural control
- Sensory and motor neuroprostheses
- Neuromodulation of the autonomic nervous system

Learning Outcomes

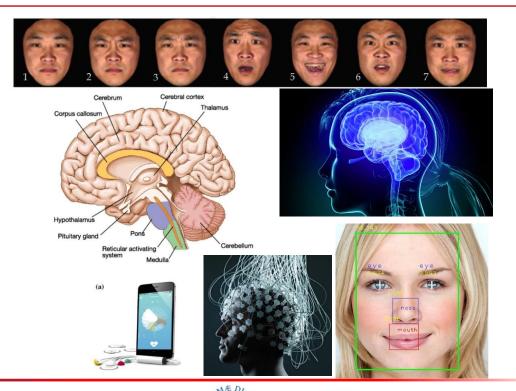
 Provide students with methodologies for the development and validation of implantable systems for neuromodulation

Affective computing

Focus

• Advanced computational techniques and instrumentations for monitoring and process physiological signals for studying emotions.

Main contents


M.Sc. Bionics

Engineering

 Physiology of emotional response; Computational modeling of emotions; Origin, processing and monitoring of ECG, breathing pattern, EDA and voice; Nonlinear methods and models for biomedical signal processing; Eye tracking, body movement analysis and facial emotion recognition

Learning Outcomes

•Acquire basic knowledge to monitor and process physiological signal corresponding to different emotional states.

2 nd \	vear –	Curricul	um: B	ioro	botics

1 st semester	2 nd semester

2 nd year – Curriculum: Neural Engineering	
1 st semester	2 nd semester

Final duties: Lab training (3 ECTS) and Thesis (15 ECTS)

Lab training (3 CFU)

This activity will consist of 75 h of Lab training that the student will perform in dedicated facilities and laboratories, with the aim to increase his/her experience in laboratory practice.

Thesis (15 CFU)

The final examination involves the preparation of a report on a research activity, and in its presentation and discussion.

